Hyperspectral Dimensionality Reduction by Tensor Sparse and Low-Rank Graph-Based Discriminant Analysis
نویسندگان
چکیده
Recently, sparse and low-rank graph-based discriminant analysis (SLGDA) has yielded satisfactory results in hyperspectral image (HSI) dimensionality reduction (DR), for which sparsity and low-rankness are simultaneously imposed to capture both local and global structure of hyperspectral data. However, SLGDA fails to exploit the spatial information. To address this problem, a tensor sparse and low-rank graph-based discriminant analysis (TSLGDA) is proposed in this paper. By regarding the hyperspectral data cube as a third-order tensor, small local patches centered at the training samples are extracted for the TSLGDA framework to maintain the structural information, resulting in a more discriminative graph. Subsequently, dimensionality reduction is performed on the tensorial training and testing samples to reduce data redundancy. Experimental results of three real-world hyperspectral datasets demonstrate that the proposed TSLGDA algorithm greatly improves the classification performance in the low-dimensional space when compared to state-of-the-art DR methods.
منابع مشابه
Dimensionality Reduction of Hyperspectral Image with Graph-Based Discriminant Analysis Considering Spectral Similarity
Recently, graph embedding has drawn great attention for dimensionality reduction in hyperspectral imagery. For example, locality preserving projection (LPP) utilizes typical Euclidean distance in a heat kernel to create an affinity matrix and projects the high-dimensional data into a lower-dimensional space. However, the Euclidean distance is not sufficiently correlated with intrinsic spectral ...
متن کاملBlock-Diagonal Constrained Low-Rank and Sparse Graph for Discriminant Analysis of Image Data
Recently, low-rank and sparse model-based dimensionality reduction (DR) methods have aroused lots of interest. In this paper, we propose an effective supervised DR technique named block-diagonal constrained low-rank and sparse-based embedding (BLSE). BLSE has two steps, i.e., block-diagonal constrained low-rank and sparse representation (BLSR) and block-diagonal constrained low-rank and sparse ...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملFeature reduction of hyperspectral images: Discriminant analysis and the first principal component
When the number of training samples is limited, feature reduction plays an important role in classification of hyperspectral images. In this paper, we propose a supervised feature extraction method based on discriminant analysis (DA) which uses the first principal component (PC1) to weight the scatter matrices. The proposed method, called DA-PC1, copes with the small sample size problem and has...
متن کاملSupervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017